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Abstract

The dependence of the bulk signal intensity from a CRAZED NMR pulse sequence on magnetic field gradient strength and di-

rection as a method to probe the geometry of porous materials is investigated. In this article, we report on the reconstruction of

three-dimensional media consisting of a void phase and an NMR-observable liquid phase using the bulk intensity of the distant

dipolar field. The correlation gradient strength and direction provide the spatial encoding of the material geometry. An integral

equation for the total signal intensity is then solved numerically by a simulated annealing algorithm to recover the indicator function

of the fluid phase. Results show that cylindrical and spherical structures smaller than the volume contributing to the NMR signal

can be resolved using three values of the correlation distance and three orthogonal gradient directions. This is done by minimizing a

cost function which measures the distance between the bulk signal dependence on gradient parameters for the simulated configura-

tion and the signal dependence for the target configuration. The algorithm can reconstruct and differentiate their spherical and cy-

lindrical phase-inverted equivalents. It can also differentiate horizontal from vertical cylinders, demonstrating the potential for

assessing structural anisotropy and other coarse geometric quantifiers in a porous material.

� 2004 Published by Elsevier Inc.
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1. Introduction

Magnetic resonance imaging has become an impor-

tant and versatile technique for determining material

structure, both in vivo and in vitro. In principle, resolu-

tion is generally limited by the available magnetic field
gradient strength (spins are resolvable if the gradient

separates their frequencies by more than the intrinsic

linewidth) but in practice, the inherent low sensitivity

and limited scan time (particularly in vivo) normally

provides the more fundamental limitation. As a result,

individual image voxels are usually much larger (typical-

ly 100lm–1mm) than cellular dimensions.
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Methods for extracting limited information on

shorter distance scales have proven very useful. Diffu-

sion provides a natural discriminant over very short

distances. In bulk water, molecules diffuse isotropical-

ly, with rms motion of approximately 7lm in any spe-

cific direction over 10ms. Water diffusion in tissue is
typically both slower and anisotropic, reflecting local

structure on a micron distance scale. This variation

is generally measured by methods such as diffusion

tensor imaging (DTI) and has turned out to be clini-

cally useful. However, there is still a significant gap

between the distances probed by DTI and those re-

solved in typical in vivo images. These limitations

are particularly severe when material inclusions or
pores are too large to be probed by pulsed-field gradi-

ent diffusion methods, as happens for example in as-
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Fig. 1. Pulse sequence diagram for CRAZED iDQC experiment. The

strength G, duration T and direction of the gradient pulses is expressed

by the wave vectors km and 2km.

1 Discretization of the domain U [ V into N3 gridpoints produces

N3 possible values for the indicator function (one for every gridpoint).

However, the product v (r)v (r 0) gives (N3)2 unknowns v (ri)v (rj).
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sessments of rock structure, trabecular bone quality,

and tumor vessel topology.

Intermolecular multiple-quantum coherences (iM-

QCs) or distant dipolar field (DDF) measurements have

been proposed as a method for probing materials micro-

structure [1,2], and to obtain sub-voxel resolution in
MRI and fMRI [3]. Measurements of the signal intensity

as function of the correlation gradient strength in a

CRAZED experiment were shown to depend on materi-

al microstructure, and that the technique is most suited

for distances of tens to hundreds of microns. In particu-

lar, it should be possible to obtain simple geometric

quantifiers in biological or porous media on those length

scales. Thus, it complements DTI and direct measure-
ments [4]. We have shown recently [5] that variation of

the gradient strength and direction can probe structural

anisotropy in trabecular bone.

Here we explore the theoretical limitations of the

iMQC method. Specifically, we address the inverse prob-

lem of reconstructing the material geometry from iMQC

measurements. We show that, at least for simple geome-

tries, it is generally possible to reconstructmicrostructural
information from a series of iMQC measurements, ex-

ploiting different gradient strengths and directions. This

implies that iMQC images can provide contrast which

complements all other MRI methods. Using three values

of the correlation distance and three orthogonal gradient

directions, we show that this simple method can recon-

struct and differentiate cylindrical from spherical geome-

tries, and their phase-inverted equivalents. Results from
the reconstruction are sufficient for computing simple sta-

tistical descriptors of the geometry.

1.1. Theory

Let the region of three-dimensional space corre-

sponding to the NMR sample volume be denoted

SðS � R3Þ. Consider a material with a solid phase,
V � S, and an NMR-active liquid phase U � S. The sets

U, V are compact in R3, V \ U has measure 0, and let

vU (r) denote the indicator function of the liquid phase:

vUðrÞ ¼
1 r 2 U ;

0 r 62 U ;

�
ð1Þ

and analoguously for vV (r), the indicator function for

the solid phase. The equilibrium magnetization density

can be written as vU ðrÞMU
0 þ vV ðrÞMV

0 ,M
U
0 is the equilib-

rium magnetization density of the liquid phase, MV
0 is

for the solid phase. We consider biphasic materials

ðMV
0 ¼ 0Þ, and we are interested in the behavior of the

NMR signal following a double-quantum CRAZED
(iDQC) pulse sequence, as shown in Fig. 1.

In the rotating wave approximation, the y-compo-

nent of the signal at t = 0 emitted by the entire liquid

phase, for this pulse sequence, is given by (see Appendix

A):
T yðkÞ ¼
Z
U

Z
U
vU ðrÞvU ðr0ÞKðr; r0Þ cosðk � rÞ

� ½sinðk � r0Þ � sinð3k � r0Þ�d3r0 d3r; ð2Þ

where the integration kernel K (r, r 0) is (3cos2h � 1)/

2|r � r 0|3. Similar expressions are obtained for the x-

component (see Appendix A), or for arbitrary pulse

phases, flip angles, and in general, the functional form

is the same: � �v (r)v (r 0) f (r, r 0)d3r 0 d3r. The problem of
solving for the material geometry amounts to solving

for the indicator function vU(r) in the integrand.

The y-component of the signal, Ty (k), is an observa-

ble which is a function of the wave vector k. The wave

vector is selected by adjusting the area and direction

of the gradient pulses. While there exists no analytic so-

lutions to this integral equation in the general case, we

are led to consider numerical approximations. An exact
solution over a three-dimensional grid of size N3 re-

quires N6 NMR measurements for different values of

the wave vector to give a soluble system of equations.1

We would like to use grid sizes of order 323 or better

to differentiate basic geometries, however, each NMR

measurement takes a little more than a minute to ac-

quire because of the long relaxation times of liquids,

and so the acquisition of 326 points would take over
2000 years. In this article, we demonstrate that the sim-

ulated annealing algorithm of Kirkpatrick [6] can be

adapted for reconstructing simple geometries on 83,

163, and 323 grids using far fewer data points.

1.2. Algorithm

The geometry of a material is reconstructed using
knowledge of its signal dependence on correlation gradi-

ent strength and direction. In principle, these could be

NMR measurements performed by measuring the bulk

signal intensity (modulus) for a CRAZED sequence as

function of several values of the wave vector

k1,k2, . . . ,knk. If we know the theoretical dependence

of the signal on material geometry, for example suppose

that the simple model of Eq. (2) holds, we can then guess
the indicator function, compute the signal dependence
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as function of wave vector and compare to the experi-

mental data. A fictitious energy can be used to measure

the deviation from the true material geometry and to

evolve the indicator function towards the optimal con-

figuration. In this article, the experimental measure-

ments are generated by using Eq. (2) and the
analogous expression for Tx (k) to calculate the NMR

signal for a given ‘‘target geometry’’ for 3 values of

the correlation distance and 3 orthogonal gradient direc-

tions, i.e., nk = 9 values of the wave vector. We call the

modulus TMðkÞ ¼ ½T 2
xðkÞ þ T 2

yðkÞ�
1=2

the ‘‘target NMR

signal,’’ since it is obtained from the target geometry

we wish to reconstruct. The volume fraction of the li-

quid phase of the target geometry is denoted /.
We take U [ V to be a rectangle [0,1] · [0,1] · [0, 1]

and consider a 323 cartesian grid of evenly spaced points

with indicator function for the fluid phase defined at ev-

ery node and denoted by vijk (i, j,k range over the inte-

gers 1–32). Consider a sequence of random variables

n = (n0, . . . ,nn) with values in the (finite) set X. The

phase space X is taken to be the set of all possible indi-

cator functions vijk subjected to the constraint that the
sum 32�3P

i, j ,kvijk must equal the volume fraction /
for the liquid phase. Let X, the set of possible outcomes,

be given by:

X ¼ fx : x ¼ ðxi0 ; . . . ; xinÞ; xi 2 Xg ð3Þ
and for each x = (xi0, . . . ,xin) put

pðxÞ ¼ l0ðxi0Þp1ðxi0 ; xi1Þ . . . pnðxin�1 ; xinÞ: ð4Þ
The set of probabilities p(x) generates a probability mea-

sure P on the r-algebra containing all subsets ofX, where
P (n0 = xi0) = l0 (x

i0) is the initial distribution (
P

il0 (x
i) =

1,0 6 l0 (x
i) 6 1) and the conditional probability

Pðnkþ1 ¼ xikþ1 j nk ¼ xik Þ ¼ pkðxik ; xikþ1Þ ð5Þ

defines a stochastic matrix for the transition from state

xik to state xik + 1 at time k. The initial distribution of this

Markov chain is the uniform distribution on X, i.e., the

simulation begins with a random checkerboard of vol-

ume fraction /. The transition probability matrix is de-

fined such that xik and xik + 1 differ by two neighboring

points having their phases inverted. A move from state
xj to state xk (xj,xk 2 X) satisfying the latter requirement

is accepted with probability

piðxj; xkÞ ¼ minð1; expð�DEjk=T iÞÞ; ð6Þ
where Ti is a ‘‘temperature’’ at time i,

DEjk ¼ EðxkÞ � EðxjÞ ð7Þ
is the change in fictitious energy of the configuration

when going from xj to xk. We define the fictitious energy

E(Æ) as the square of the difference between the NMR

signal of the current configuration TM (km;x
j) and the

target configuration TM (km), summed over all wave

vectors in the experiment:
EðxjÞ ¼ 1

nk

X
km2K

½TMðkmÞ � TMðkm; xjÞ�2; ð8Þ

where K = {k1,k2, . . . ,knk}.
In addition to flipping only pairs of neighboring

points, the second departure from Kirkpatrick�s algo-

rithm aimed at speeding up convergence consists of

starting with a coarse grid of 83. The configuration is

evolved until an apparent plateau in the configuration
energy is reached, i.e., until convergence reaches a much

slower rate, at which point the grid size is increased to

163. Evolution proceeds, then a final pass is done on a

323 grid. The steps are summarized in Algorithm 1

(Fig. 2).

The temperature cooling schedule employed consist-

ed of monitoring the acceptance rate every 20 moves,

by looking at the past group of 20 moves and decreasing
the temperature by a factor of 5 if more than 10% of the

last 20 moves had been accepted. If, on the other hand,

more than 30 consecutive moves had been rejected, the

temperature would be increased by a factor of 1.5. A

jump was made from coarse matrix to the next finer ma-

trix according to whether the energy appeared to have

reached a local minimum. These transition times were

nearly the same for all simulations. Unlike the inverse
logarithmic (C/ln t) schedule [7], convergence using this

approach is not guaranteed but at least gives reasonable

computation times.

1.3. Signal as function of correlation distance

We use the method of fast Fourier transformation

(FFT) [8] to calculate the magnetic dipolar interactions
on a cartesian grid. This permits speedy calculations of

the dipolar field for a given configuration of the indica-

tor function. The signal intensity is calculated from a

discrete version of Eq. (A.15):

T iðkmÞ ¼
X
rl2U

MjðrlÞBkðrlÞ �MkðrlÞBjðrlÞ; ð9Þ

where i, j,k are the three components of themagnetization

along the usual basis (x,y,z), respectively, and cyclic per-

mutations. This is essentially the same as Eq. (2), but ap-

plies to more general preparations than 90�x � 90�x ,

provided the proper initial conditions are used as input.
The dipolar fieldB (r) is calculated in Fourier space by nu-

mericalFFTof themagnetizationMðrÞ ! ~MðkÞanduse
of a formula given byDeville [9] (and derived inAppendix

B).

We pick a number of wave vectors km 2 {k1,k2, . . . ,
knk}, by adjusting the gradient area and direction. We

found a good compromise between reconstruction accu-

racy and computation time by using km = 2p/km of 10,
16, and 32 points for the 323 grid and three orthogonal

gradient directions (x,y,z) so that nk = 9.The dipolar field

essentially encodes the geometry of the sample�s fluid



Fig. 2. Evolution of the indicator function (Algorithm 1).
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phase over a distance scale that is determined by the wave

number km = |km| and the direction of the vector km.

The simulation and FFT operations are all done on

the 323 grid. Simulations at smaller grid sizes 83 and

163 are done on the 323 grid by manipulating larger clus-
ters of points as needed. For each grid size Ni, a thresh-

old energy Ethresh (Ni) where convergence had reached a

much slower rate was used to move on to the next grid

size Ni fi Ni + 1. The transition to higher grid sizes

N1 fi N2 fi N3 is done by moving smaller clusters of

points. To reduce the effect of ghost cells in the FFT,

the phase space X was further restricted to ensure there

was a minimum of 4 pixels at the edge of the 323 grid
where the indicator function is identically 0. The calcu-

lation of signal intensities is summarized in Algorithm 2

(Fig. 3).
1.4. Markers of structural anisotropy

For a broad class of materials, the degree of structur-

al anisotropy is important. For example, in materials

where mechanical properties are of interest, structural

anisotropy tensors based on measurements of the mean
intercept length in orthotropic materials can be related

to the elastic moduli [10]. The lower-order statistical de-

scriptors that are of interest in characterizing random

media (such as the lineal path function, and

n-point correlation functions [11]) can, in theory, be
obtained from the reconstruction. We recall that the

n-point correlation function for the liquid phase is given

by the classical ensemble average,

Snðx1; . . . ; xnÞ ¼ hvUðx1Þ . . . vUðxnÞi

¼
Z

X
vUðxÞðx1Þ . . . vUðxÞðxnÞPðdxÞ; ð10Þ

where the average is computed over a large number of

realizations of the random medium in order to represent

the joint probability P{vU(x1) = 1; . . . ;vU(xn) = 1}. The

2-point correlation function is given by:

S2ðx1; x2Þ ¼ hvU ðx1ÞvUðx2Þi

¼
Z

X
vUðxÞðx1ÞvUðxÞðx2ÞPðdxÞ: ð11Þ

To quantify material anisotropy, this correlation

function can be calculated along any specific direction;
any dependence on orientation of the line adjoining



Fig. 3. Calculation of NMR signal (Algorithm 2).
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the 2 points will reflect the degree of anisotropy. Since

there are not enough realizations in this study to com-

pute ensemble averages, we instead assume statistical

homogeneity, so that the 2-point correlation function

depends only on the distance r = |x1 � x2|, and ergodic-

ity [11] and replicate the 323 grid in a periodic array. S2

is computed along the 3 principal axes by randomly

tossing pairs of points x,x + rei 2 U [ V (with uniform

distribution) over the array and counting the number

of times both points fall simultaneously in the liquid

phase to get the following three quantities:

SxðrÞ ¼ hvUðxÞvU ðxþ rx̂Þi
SyðrÞ ¼ hvU ðxÞvUðxþ rŷÞi
SzðrÞ ¼ hvU ðxÞvU ðxþ rẑÞi

ð12Þ

A fully isotropic material has Sx (r) = Sy (r) = Sz (r). For

anisotropic media, the triple (1//)(Sx (r0),Sy (r0),Sz (r0))

can provide a useful quantifier of anisotropy. The point
r0 should be chosen sufficiently far from 0 since

Si (0) = /, i.e., Sx (0) = Sy (0) = Sz (0) all equal the vol-

ume fraction, and it should be smaller than the grid size

to avoid asymptotic volume fraction weighting

Si(r)fi /2 as r fi 1 which is usually attained exponen-

tially fast [11].
2. Results

The simulated algorithm was implemented in the C

programming language on a 1.7MHz Pentium IV per-

sonal computer with 1GB memory and the FreeBSD

5.1 operating system. Roughly five days were required

to achieve 100,000 steps in each of the simulations,

which aimed at reconstructing the following objects
centered on a 323 grid: a sphere of radius 11 points,

horizontal and vertical cylinders 24 points in length

and cross-section of radius 7 points, and phase-inverted

sphere and cylinder of the same radii and length as the

non-inverted geometries. The phase-inverted geometries

have the solid and liquid phases inverted. In this case,
the liquid phase constitutes the medium which lies out-

side rather than inside the sphere/cylinder boundary,

yielding an inclusion rather than a pore.

Fig. 4 shows image (2D) projections for the recon-

structed media (A–E) for the corresponding target ge-

ometries (F–J). These images are obtained by summing

the indicator function vijk along the third dimension k

and plotting the resulting intensity in the i, j plane. From
these projections, it is clear that the algorithm can recon-

struct and differentiate horizontal versus vertical cylin-

ders. The reconstruction of the sphere appears slightly

rectangular but the indicator function essentially covers

the same volume and appears to preserve a good degree

of isotropy. Phase-inverted geometries result in the li-

quid phase located mainly on the edges of the grid, with

minimal liquid at the center of the grid. The phase-in-
verted cylinder contains far less liquid along the center

of the projection than the phase-inverted sphere, as

expected.

Because these summations along the third dimension

do not reveal the full structure, it is helpful to plot 1D

profiles along various dimensions. Figs. 5–9 show pro-

jections of the indicator function along various dimen-

sions obtained, for example, by summing the first and
second dimensions (i, j) of vijk and plotting the sum

along the third dimension k in the case of a 2-sphere

S2ðZÞ ¼ fði; j; kÞ 2 Z3 : ði� i0Þ2 þ ðj� j0Þ
2 þ ðk � k0Þ2

6 r2g



Fig. 4. Summations along k (third dimension) of the indicator function (
P

k vijk) plotted as 2D images (intensity plots) for the various geometries.

Frames (A–E) are for the reconstruction and frames (F–J) are for the target geometry.

(D) inverted

sphere

(A) sphere (B) vertical

cylinder

(C) horizontal

cylinder

(E) inverted

cylinder

(H) horizontal

cylinder

(G) vertical

cylinder

(F) sphere (I) inverted sphere (J) inverted

cylinder

Fig. 5. Sphere geometry (�, target configuration; m, reconstruction).

Summation of the matrix vijk over the indices (A) i, j and (B) j,k as

function of k and i, respectively.

(A)
P32

i;j¼1vijk vs: k (B)
P32

j;k¼1vijk vs: i

Fig. 6. Cylinder geometry (�, target configuration;m, reconstruction)

with cylinder aligned along z (or k index). Summation of the matrix vijk
over the indices (A) i, j and (B) j,k as function of k and i, respectively.

(A)
P32

i;j¼1vijk vs: k (B)
P32

j;k¼1vijk vs: i

Fig. 7. Cylinder geometry (�, target configuration;m, reconstruction)

with cylinder aligned along x (or i index). Summation of the matrix vjk
over the indices (A) i, j and (b) j,k as function of k and i, respectively.

(A)
P32

i;j¼1vijk vs: k (B)
P32

j;k¼1vijk vs: i
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produces a profile along k of the form

f ðkÞ ¼ pr2 � pðk � k0Þ2; ð13Þ

and by symmetry, the same profile is expected along i

and j. The i and k profiles are shown in Figs. 5A and

B by the curves with round symbols (�), where r = 11

and k0 = 16. The j profile (not shown) is similar to the

i and k profiles.

Figs. 5–9 are plots generated using the reconstructed

indicator function for a single simulation. The deviations
between reconstructed (m) and ideal (�) geometries in
these plots are representative of typical errors obtained

in a run of 100,000 steps.

The curves with triangular (m) symbols in Fig. 5 are

for the reconstruction of the spherical geometry (liquid-

filled sphere). The largest deviations from the target pro-

file are usually observed near the center of the sphere.

The intrinsic noisiness of the stochastic reconstruction

procedure, under the constraint of a fixed volume frac-
tion, inevitably redistributes small amounts of the liquid

phase away from the center. We also notice the nearly

quadratic fall-off on opposite sides of the graphs.

The results of Fig. 6 are for the cylindrical geometry

(liquid-filled cylinder) with the principal axis of the cyl-

inder aligned along the z axis (k index). The rectangular

profile is clearly depicted in Fig. 6A, where the stochas-

tic reconstruction has produced only slightly rounded
edges. We note that the transverse profile (Fig. 6B) ap-

proximates the circular cross-section albeit a small over-

all shift to the right of a few grid points. Such overall

shifts may arise randomly but usually span no more

than a few grid points. For this cylinder, the profile of

the target configuration is of the form



Table 1

Value of the 2-point correlation function evaluated at r0 = 8

Target geometry Reconstruction

Sx(r0) Sy(r0) Sz(r0) Sx(r0) Sy(r0) Sz(r0)

Sphere 0.10 0.10 0.10 0.10 0.10 0.10

Vertical cyl. 0.05 0.05 0.09 0.05 0.05 0.08

Horizontal cyl. 0.09 0.05 0.05 0.08 0.05 0.05

Inverted sphere 0.12 0.12 0.12 0.12 0.12 0.12

Inverted cyl. 0.15 0.15 0.24 0.15 0.15 0.23

Fig. 8. Phase-inverted sphere geometry (�, target configuration; m,

reconstruction). Summation of the matrix vijk over the indices (A) i,j

and (B) j,k as function of k and i, respectively.

(A)
P32

i;j¼1vijk vs: k (B)
P32

j;k¼1vijk vs: i

Fig. 9. Phase-inverted cylinder geometry (�, target configuration; m,

reconstruction). Summation of the matrix vijk over the indices (A) i, j

and (B) i,k as function of k and j, respectively.

(A)
P32

i;j¼1vijk vs: k (B)
P32

i;k¼1vijk vs: j
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f ðiÞ ¼ 2lðr2 � ði� i0Þ2Þ1=2; ð14Þ

where r = 7 is the cylinder radius, i0 = 16 and l = 24 is its

length. It is clear from these results that the algorithm

can differentiate spherical from cylindrical pores.

In Fig. 7 the reconstruction was performed using the

same cylindrical geometry, but for a cylindrical pore

aligned horizontally instead of vertically. We conclude

that the algorithm can correctly resolve the orientation
of this cylinder.

The profiles of a phase-inverted sphere are illustrated

in Figs. 8A and B by the curve with circular (�) sym-

bols. The reconstruction (m) is able to place the liquid

phase on the outside, while minimizing the amount of li-

quid at the center of the grid.

Similar results for the phase-inverted cylinder show

a good rectangular profile in Fig. 9A and more liquid
on the edges of the grid than on the inside for the cir-

cular cross-section in Fig. 9B. We note that in Figs. 4,

8, and 9 there are 4 points at the edges of the grid

which take the value 0. This is due to the restriction

imposed on the phase space X (see last paragraph of

Section 1.3).

Values of the 2-point correlation function evaluated

at r0 = 8 grid points are shown in Table 1. First we note
excellent agreement between the values for the ideal/tar-

get geometries and the reconstructed medium, which

confirms the ability of the algorithm to resolve coarse

geometric features. The higher value for Sz (r0) in the

case of the vertical cylinder and phase-inverted cylinder

is indicative of structural anisotropy and results because
the long axis of the cylinder is oriented along z. We also

notice the higher value of 0.08 for Sx (r0) for the long

axis of the cylinder in the case of the horizontal cylinder.

Comparison to the vertical cylinder, where the value

0.08 occurs for Sz (r0) instead of Sx (r0) confirms that

the 2-point correlation function can resolve the orienta-

tion of a cylinder. In this manner, markers of structural

anisotropy can be obtained from triples (Sx (r0),
Sy (r0),Sz (r0)) which are in the form of a vector.
3. Discussion

3.1. Choice of grid size

In the example given above, the 2-point correlation
function was calculated from the reconstructed data.

There are much more efficient ways to compute this

correlation function (see [1,4,12] for a direct method

without the need for inversion). An important advan-

tage of the reconstruction is that it allows, in principle,

any other statistical descriptors of the geometry to be

computed; see [11] for a comprehensive list of known

descriptors. The fundamental limit in all cases is the ac-
curacy of the reconstruction. It is anticipated that a

larger sampling of k-space would improve the perfor-

mance of the algorithm. However, more data points in-

crease the computational load, which severely limits the

grid size that can be used. Fig. 10 shows the progress

of a typical simulation near the completion of each

stage at 83, 163, and 323 grid sizes, after 1, 3, and 5

days of total computation time, respectively. The
changes in going from 83 to 163 are substantial, howev-

er, in going to 323, the improvements are relatively

small. For the objects in this study, a 163 grid would

be enough to reproduce the shape reasonably well.

All of our reconstructions were able to converge to

the correct shape. For more complicated objects, such

as 2 thin cylinders, or 2 spheres side-by-side, the recon-

structions were less successful, sometimes converging to
the correct shape, sometimes not. In these cases, the 83

grid is generally too coarse a starting point to provide

an adequate phase space required to the search algo-

rithm, while the 163 random checkerboard converges

too slowly.



Fig. 10. Summations along k of the indicator function vijk plotted as

2D images for the horizontal cylinder, at different stages and grid sizes

in the simulation.

(A) 8 · 8 · 8 at t = 0

(C) 16 · 16 · 16 at t = 3

days

(B) 8 · 8 · 8 at t = 1 day

(D) 32 · 32 · 32 at t = 5

days
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3.2. log N speed improvement

Complete convergence in this study was not attained,

due to the high computational costs. Most of the time is

spent calculating the dipolar field (an O (N3 logN) oper-

ation) for several CRAZED preparations of different

wave vectors. Direct calculations of a double volume in-

tegral such as formula (2) would require O (N6) opera-

tions, which is even less efficient. A careful look at
such calculations reveals that T (k) varies only by a small

amount when pairs of points are flipped. In this section,

we show that a perturbative expansion of the double in-

tegral in terms of functional derivatives is possible and

results in a O (N3) method. When regarding k as a pa-

rameter, double integrals such as Eq. (2) can be ex-

pressed as a functional of the indicator function v (r):

T ½v� ¼
Z Z

vðrÞvðr0Þf ðr; r0Þd3r0 d3r: ð15Þ

In the case of Eq. (2) the kernel is f (r,r 0) = K(r,r 0) cos

(k Æ r) [sin (k Æ r 0) � sin (3 k Æ r 0)]. The simulated annealing

move produces a change Dv in the indicator function v,
which is expressed as a transformation: v fi v + Dv. In
the present case, Dv is the flipping of pairs of points;

we may expand the functional as a Taylor series to first
order in the perturbation function Dv (see, for example,

[13] or [14]):

T ½vþ Dv� ¼ T ½v� þ
Z
R3

dT
dvðrÞDvðrÞd

3rþ o½Dv�; ð16Þ

where, given any � > 0, there exists d > 0 such that

o[Dv] < � Æ sup|Dv| holds for any choice of Dv(Æ), whenever
sup|Dv| < d. The functional derivative dT

dvðrÞ is the limit:
dT
dvðrÞ ¼ lim�!0

1

�

Z Z
vðr00Þ þ �dðr00 � rÞ½ � vðr0Þ½

�

þ � � dðr0 � rÞ�f ðr00; r0Þd3r00 d3r0

�
Z Z

vðr00Þvðr0Þf ðr00; r0Þd3r00 d3r0
�

¼
Z Z

dðr00 � rÞvðr0Þf ðr00; r0Þ½

þ vðr00Þdðr0 � rÞf ðr00; r0Þ�d3r00 d3r0

¼
Z

d3r0vðr0Þ f ðr; r0Þ þ f ðr0; rÞ½ � ð17Þ

On a 3D grid of points G this is calculated as a sum

(O (N3) operations):Z
d3r0vðr0Þ f ðr; r0Þ þ f ðr0; rÞ½ � �

X
ri2G

vri fr;ri þ fri ;r½ � ð18Þ

The Taylor expansion becomes:

T ½vþ Dv� � T ½v� þ
X
r12G

X
r22G

vr2 ½fr1;r2 þ fr2;r1 �Dvr1 ð19Þ

In the simple case where the phases of points r1 and r2
are reversed, the perturbation has the form:

Dvr ¼ Dþðr � r1Þ þ D�ðr � r2Þ; ð20Þ
where D	ðr � r1Þ ¼ 	1 whenever r ¼ r1 and 0 otherwise.

Thus,

T ½vþ Dv� � T ½v� þ
X
r12G

X
r22G

vr2ðfr1;r2 þ fr2;r1Þ

� ½Dþðr1 � r1Þ þ D�ðr1 � r2Þ�
¼ T ½v� þ

X
ri2G

vri ½fr1;ri þ fri;r1 � fr2;ri � fri;r2 � ð21Þ

which says that the signal intensity as function of corre-

lation distance, for a modified indicator function v + Dv
equals the old one T [v], plus a correction termP

ri2Gvri ½fr1;ri þ fri ;r1 � fr2;ri � fri ;r2 �. This correction term

is O (N3).

3.3. Extension to multiphase materials

In a manner analogous to the annealing algorithms

which aim at reconstructing multiphase random media

from any number and types of correlation functions

(see, for example, [15–17]), the present algorithm can

easily be extended to handle several magnetization com-

ponents of different magnetization densities and suscep-
tibility. To accomplish this, it would be necessary to

assume knowledge of the volume fraction, magnetiza-

tion density, and susceptibility for each component;

these would be held constant during the simulation. A

set of indicator functions, one for each phase, would

be required along with the flipping of pairs of points be-

tween any two randomly chosen phases of the medium.

Since the induced magnetic fields are sums over all the
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dipoles in the medium, the calculation amounts to a

DDF calculation for all the different phases.

3.4. Gas phase measurements

Other NMR techniques exist for probing porous ma-
terial structure. NMR diffusion and relaxation methods

can effectively probe micron-scale pores [18] but diffu-

sion in liquids is too slow to probe larger scales. MRI al-

lows larger pores to be spatially resolved but SNR

limitations often hamper its use as a microscopy tool.

More recently, a promising new technique using 129Xe

gas phase measurements has been shown to be useful

over intermediate scales (100–2000lm) [19]. With the
exception of MRI, current techniques generally do not

provide the indicator function of the pores. Methods

based on the DDF can directly probe the indicator func-

tion using NMR signal from the fluid phase, without the

need to introduce probing agents or any specific model-

ing of the data. If the pores of a material are empty, a

drawback is that a fluid needs to be introduced; howev-

er, the penetration of fluid inside small pores is not as
good as that of inert gas. Also, because it does not rely

on relaxation mechanisms, the DDF method cannot

probe surface properties. Consequently, nuclei which re-

lax by quadrupolar interactions such as 131Xe may be

more useful [20].
4. Conclusion

We have demonstrated in theory that three-dimen-

sional indicator functions for the geometry of a biphasic

material, whose liquid phase is observable by NMR and

its solid phase does not contribute to the signal, can be

obtained through numerical inversion by simulated an-

nealing of an integral equation which describes the

NMR signal as function of material geometry and pulse
sequence parameters. The main finding of this research

is that a simple cost function, which aims at matching

the signal dependence of a CRAZED sequence with cor-

relation gradient strength and direction to the signal de-

pendence of the target geometry, proved sufficient to

reconstruct basic spherical and cylindrical geometries

on a 323 grid using as little as 3 different gradient

strengths and 3 orthogonal directions. We have chosen
the CRAZED experiment because it is based on volume

measurements of the distant dipolar field, which encode

the material geometry over various length scales. This

provides a method for directly probing the geometry

of porous materials by NMR in cases where high-resolu-

tion imaging is not an option, or in cases where the

structures are too large to be resolved by diffusion-based

methods. While in the present study, the simulation
looks at the NMR signal of the entire sample, this could

just as easily be the spatially resolved signal from a sin-
gle pixel. Hence, it could be used for the spatial mapping

of coarse geometric quantifiers. We have demonstrated

its application to calculating a marker of anisotropy us-

ing the reconstructed medium.
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Appendix A. Integral equation for the signal

In this Appendix we derive an expression for the de-

pendence of the signal intensity at the conclusion of the

double-quantum CRAZED preparation of Fig. 1. Two

gradient pulses are applied with the same polarity.

For simplicity, we neglect relaxation and diffusion be-
cause these mechanisms do not contribute to the struc-

tural dependence of the signal intensity we wish to

investigate. The results hold for short evolution times,

where only a small amount of non-linear evolution takes

place. Extension to longer evolution times or strong di-

polar fields is straightforward but not practical because

a Taylor expansion in time of the magnetization evolu-

tion requires a large number of terms.

A.1. Simple iDQC CRAZED preparation

We denote the initial magnetization as (0,0,Mz),

where Mz ¼ vU ðrÞMU
0 þ vV ðrÞMV

0 , M
U
0 is the equilibrium

magnetization of the liquid phase, MV
0 is the equilibrium

magnetization for the solid phase. We consider media

for which MV
0 ¼ 0 and simply write MU

0 ¼ M0 for short
and we consider a simple iDQC CRAZED sequence

for short evolution times s, where evolution under the

DDF is negligible. A clockwise rotation of angle a about
the x axis of the initial magnetization gives:

MxðrÞ ¼ 0;

MyðrÞ ¼ vUðrÞM0 sin a;

MzðrÞ ¼ vU ðrÞM0 cos a:

ðA:1Þ

The first gradient pulse whose direction and area de-

fines a wave vector k turns this into a spatially depen-

dent sinusoid modulation. For a local resonance

frequency offset dr = Dx(r) we have:

MxðrÞ ¼ �vU ðrÞM0 sin a sinðk � rþ drsÞ;
MyðrÞ ¼ vUðrÞM0 sin a cosðk � rþ drsÞ;
MzðrÞ ¼ vU ðrÞM0 cos a:

ðA:2Þ

The second rf pulse (b) induces a clockwise rotation:



308 L.-S. Bouchard, W.S. Warren / Journal of Magnetic Resonance 170 (2004) 299–309
MxðrÞ¼�vU ðrÞM0 sinasinðk � rþdrsÞ;
MyðrÞ¼ vUðrÞM0ðsinacosbcosðk � rþdrsÞþ cosasinbÞ;
MzðrÞ¼ vU ðrÞM0ð�sinasinbcosðk � rþdrsÞþ cosacosbÞ:

ðA:3Þ

Then applying the second gradient pulse k 0 to pro-
duce a counter-clockwise rotation of angle k 0 Æ r + 2drs:

MxðrÞ ¼ vU ðrÞM0 � sin a sinðk � rþ drsÞ cosðk0 � rþ 2drsÞ½
� sin a cos b sinðk0 � rþ 2drsÞ cosðk � rþ drsÞ
� sin b cos a sinðk0 � rþ 2drsÞ�;

MyðrÞ ¼ vU ðrÞM0 � sin a sinðk � rþ drsÞ sinðk0 � rþ 2drsÞ½
þ sin a cos b cosðk0 � rþ 2drsÞ cosðk � rþ drsÞ
þ sin b cos a cosðk0 � rþ 2drsÞ�;

MzðrÞ ¼ vU ðrÞ M0ð� sin a sin b cosðk � rþ drsÞ½
þ cos a cos bÞ�: ðA:4Þ

Taking a = b = 90� gives cosa = cos b = 0, sin a = sin

b = 1 and the expression simplifies to:

MxðrÞ ¼ �vU ðrÞM0 sinðk � rþ drsÞ cosðk0 � rþ 2drsÞ;
MyðrÞ ¼ �vU ðrÞM0 sinðk � rþ drsÞ cosðk0 � rþ 2drsÞ;
MzðrÞ ¼ �vUðrÞM0 cosðk � rþ drsÞ ðA:5Þ

and this is equivalent to:

MxðrÞ ¼ �vU ðrÞðM0=2Þðsinðr � ðkþ k0Þ þ 3drsÞ
þ sinðr � ðk� k0Þ � drsÞÞ;

MyðrÞ ¼ vUðrÞðM0=2Þðcosðr � ðkþ k0Þ þ 3drsÞ
� cosðr � ðk� k0Þ � drsÞÞ;

MzðrÞ ¼ �vU ðrÞM0 cosðk � rþ drsÞ:

ðA:6Þ

In the case of where the gradients are in a 2:1 ratio

(k 0 = 2k), we substitute k 0 � k = k and k 0 + k = 3k and

get:

MxðrÞ ¼ vUðrÞðM0=2Þðsinðr � kþ drsÞ
� sinð3r � kþ 3drsÞÞ;

MyðrÞ ¼ vUðrÞðM0=2Þðcosð3r � kþ 3drsÞ
� cosðr � kþ drsÞÞ;

MzðrÞ ¼ �vU ðrÞM0 cosðk � rþ drsÞ:

ðA:7Þ

In the next section only, we denote this magnetization

vector following a CRAZED preparation as
M0(r) = (Mx (r),My (r),Mz (r)), and we will use this as

the initial (t = 0) magnetization distribution for a given

value of the equilibrium magnetization density M0.

A.2. Equations of motion

The magnetization evolutionM0(r) fi Mt(r) in the ro-

tating frame is given by:
MtðrÞ ¼ M0ðrÞ þ cMtðrÞ � BðrÞt þ oðr; tÞ; ðA:8Þ
where B(r) is the dipolar field acting on the magnetiza-

tion at r at time t = 0, and o (r, t) is a function with the

property that limt fi 0io(r,t)i/|t| = 0. The time axis is as

in Fig. 1. To get the bulk magnetization Tt, we integrate

over the liquid phase:

Tt ¼
Z

R3

vUðrÞMtðrÞd3r ¼
Z
U
MtðrÞd3r

¼
Z

U
M0ðrÞd3rþ ct

Z
U
M0ðrÞ � BðrÞd3rþ oðr; tÞ:

ðA:9Þ

The first term on the right hand side is zero after a

CRAZED preparation, assuming that the gradient puls-

es act as perfect spoiler gradients:

TtðkÞ ¼
Z

U
MtðrÞd3r ¼ ct

Z
U
M0ðrÞ � BðrÞd3rþ oðr; tÞ

ðA:10Þ
we denote the total magnetization by Tt (k) since the

magnetization has been modulated according to the

wavevector k.

A.3. Observed signal

The observed signal is the complex quantity Tt,x +

iTt, y. The ith component of this cross-product, where

(i, j,k) = (x,y,z) and cyclic permutations, is given by:

T t;iðkÞ ¼ ct
Z
U

MjðrÞBkðrÞ �MkðrÞBjðrÞ
� �

d3r; ðA:11Þ

where

Bx;yðrÞ ¼
l0

4p

Z
U
Kðr; r0ÞMx;yðr0Þd3r0;

BzðrÞ ¼
l0

4p

Z
U
Kðr; r0Þð�2Mzðr0ÞÞd3r0

ðA:12Þ

and K (r, r 0) stands for (3cos2h � 1)/2|r � r 0|3. Neglecting

field inhomogeneities (dr = 0), the initial magnetization is

MxðrÞ ¼ vUðrÞðM0=2Þðsin r � k� sin 3r � kÞ;
MyðrÞ ¼ vU ðrÞðM0=2Þðcos 3r � k� cos r � kÞ;
MzðrÞ ¼ �vU ðrÞM0 cosðk � rÞ;

ðA:13Þ

and we get, upon substitution:

T t;yðkÞ ¼
3

8p
l0cM

2
0t
Z
U

Z
U
d3r0 d3rvUðrÞvU ðr0ÞKðr; r0Þ

� cosðk � rÞ½sinðk � r0Þ � sinð3k � r0Þ�: ðA:14Þ

The corresponding expression for Tt,x (k) is obtained
by substituting the two occurrences of sin for �cos. For

the purpose of obtaining and comparing numerical solu-

tions for various material geometries, we discard the

constants and write Ti (k) for integrals of the type:

T iðkÞ ¼
Z
U
½MjðrÞBkðrÞ �MkðrÞBjðrÞ�d3r ðA:15Þ
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and we take M and B to be dimensionless quantities for

the numerical simulations.
Appendix B. Dipolar field in Fourier space

In this appendix we present a simple proof of the

expression for the dipolar field in Fourier space (Deville

et al. [9]). The part of the dipolar field which is invariant

to rotations about the z-axis is given in real space by the

formula:

BðrÞ ¼
Z
R3

d3r0
1� 3cos2h

2jr� r0j3
½3Mzðr0Þẑ�Mðr0Þ�; ðB:1Þ

where cos h ¼ ẑ � ðr� r0Þ=jr� r0j. This is a convolution in

real space ofMi(r
0) with u(r 0) = (1 � 3cos2h)/2|r � r 0|. In

Fourier space it is a multiplication of their respective
Fourier transforms ~MiðkÞ and ~uðkÞ:

~BðkÞ ¼ 4p
6
½3 ~MzðkÞẑ� ~MðkÞ�½1� 3ðk̂ � ẑÞ2�: ðB:2Þ

This is proved by doing the change of variables

y = r � r 0 and d3r = d3y. Then, by Fubini�s theorem:

~BðkÞ ¼
Z

R3

d3re�ik�rBðrÞ

¼
Z

R3

Z
R3

d3yd3r0e�ik�ye�ik�r0 1� 3ðŷ � ẑÞ2

2y3

� 3Mzðr0Þẑ�Mðr0Þ½ �

¼
Z

R3

d3y
1� 3ðŷ � ẑÞ2

2y3
e�ik�y

�
Z
R3

d3r0 3Mzðr0Þẑ½
�

�Mðr0Þ�e�ik�r0
�

¼
ffiffiffiffiffiffi
4p
5

r
3 ~MzðkÞẑ� ~MðkÞ
� � Z

R3

d3ye�ik�yY 0
2ðhyÞy�3;

where Y 0
2ðhyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5=16p

p
ð3cos2hy � 1Þ and cos hy ¼ ŷ � ẑ.

Substituting the expansion:

e�ik�y ¼ 4p
X1
l¼0

Xl

m¼�l

ilY m
l

ðp� hk; pþ /kÞ

� Y m
l ðhy ;/yÞjlð�kyÞ ðB:3Þ

and integrating over the angles using
R
S2Y

m
l

Y m0

l0

dX ¼ dmm0dll0 leaves only one surviving term (l = 2,

m = 0). Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16p=5Þ

p
Y 0

2ðhkÞ ¼ ð3cos2hk � 1Þ ¼
3ðk̂ � ẑÞ2 � 1 and Y 0

2ðhyÞ ¼ Y 0

2 ðhyÞ, we have that:

�
Z
R3

d3yY 0
2


ðp� hkÞY 0
2ðhyÞY 0


2 ðhyÞj2ðkyÞy�3

¼ �
ffiffiffiffiffiffiffiffi
5

16p

r Z 1

0

dyy2y�3ð3cos2hk � 1Þj2ð�kyÞ

¼
ffiffiffiffiffiffiffiffi
5

16p

r
ð1� 3ðk̂ � ẑÞ2Þ

Z 1
dyy�1j2ð�kyÞ: ðB:4Þ
0

Using the identity j2(n) = (sinn)(n�3 � n�1) � (cosn)
(3n�2), the last integral evaluates to 1/3. This completes

the proof.
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